Training on "Molecular Identification and DNA Barcoding of Insect Pests and Natural Enemies including Invasive species" (Under ICAR-NBAIR HRD) 18. 11. 209 to 27. 11. 2019

# Mitochondrial Genome and its application in DNA Barcoding

Presented by : M. NAGESH, Pr. Sci. & Head Division of Genomic Resources ICAR-NBAIR, Bengaluru nagesh.m@icar.gov.in

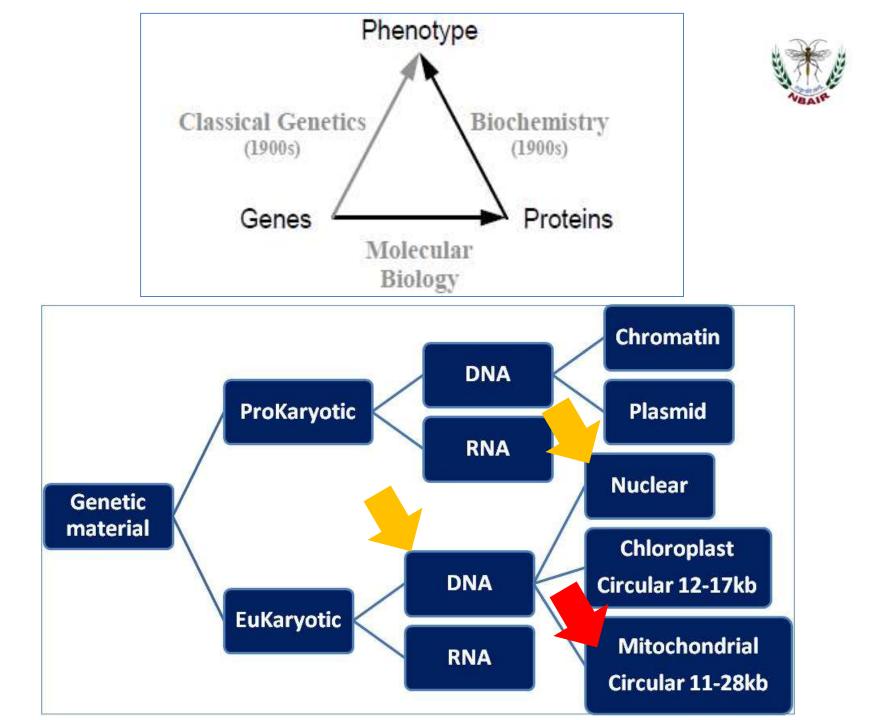


# **Broad topics of the training**

| DNA isolation Techniques                  | Dr. R. Gandhi Gracy & Mr. Venugopala |
|-------------------------------------------|--------------------------------------|
| PCR Techniques                            | Dr. M. Mohan, Mr. Arya, Dr Nisha     |
|                                           | Nayyar,                              |
| Sequencing                                | Dr Gracy, Mr Arya, Dr Jyoti          |
| Databases, NCBI Database: BLAST           | Dr. Pratheepa, Dr Ashika, Dr Jyoti   |
| NCBI-BankIt / DNA Bar coding              | Dr. Gandhi Gracy, Dr. Ashika and Mr. |
|                                           | Venugopala                           |
| BOLD, DNA Barcoding                       | Dr Venkatesan, Dr Nayyar             |
| Introduction to Schools of Taxonomy       | Dr. David. K. J.                     |
| Integrative Taxonomy                      | Dr Ankita Gupta                      |
| Molecular Phylogeny- (MEGA 7)             | Dr. Aditi                            |
| Introduction to Schools of Taxonomy       | Dr Joshi                             |
| <b>Evolutionary Biology and Molecular</b> | Dr. Praveen Karanth, IISC            |
| Phylogeny                                 |                                      |
| Mitochondrial DNA and DNA Bar             | M. NAGESH                            |
| Coding                                    |                                      |
| Invertebrate Molecular Biology: an        | M. Nagesh                            |
| overview                                  |                                      |



### **Brief review**

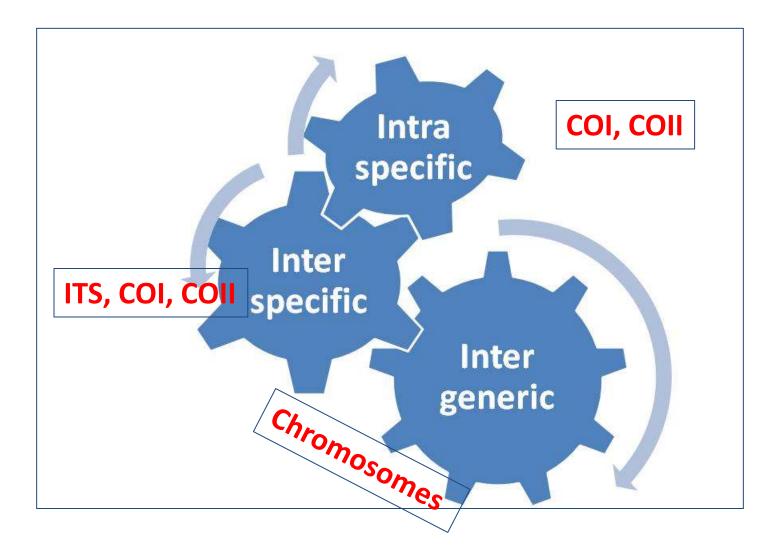

BIODIVERSITY

CLASSIFICATION – TAXONOMY – SYSTEMATICS – PHYLOGENY

VARIABILITY & SIMILARITY

| Classification: Arrangemen<br>Taxonomy _ identification<br>features/characters/traits | most inclusive                                    | Domain<br>Kingdom<br>Phylum |         |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|---------|--|--|--|--|--|--|--|
| Taxonomy                                                                              | Taxonomy Systematics                              |                             |         |  |  |  |  |  |  |  |
| Classification in to taxa                                                             | Evolutionary relationships                        |                             | Order   |  |  |  |  |  |  |  |
| Part of Systematics                                                                   | Relationships                                     |                             | Family  |  |  |  |  |  |  |  |
| Classification, naming                                                                | Classification, naming,<br>cladistics, phylogeny, | least inclusive             | Genus   |  |  |  |  |  |  |  |
|                                                                                       | evolution                                         | $\sim$                      | Species |  |  |  |  |  |  |  |








# Simplified understanding of capturing - Integrative Taxonomy

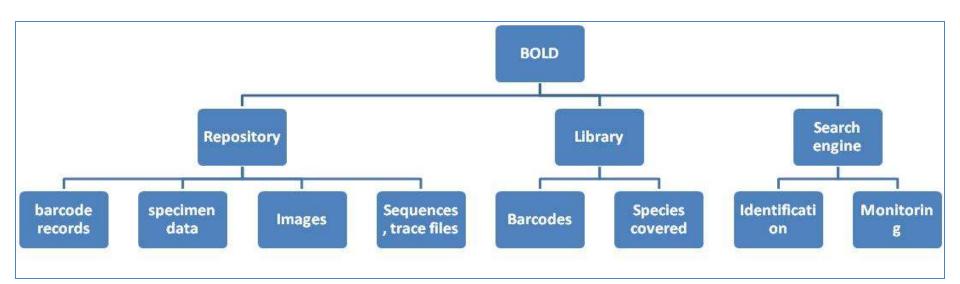
### **Mitogenomics**







# Global initiative and purpose


iBOL: International BAR CODE OF LIFE BOLD: Barcoding of Life Database

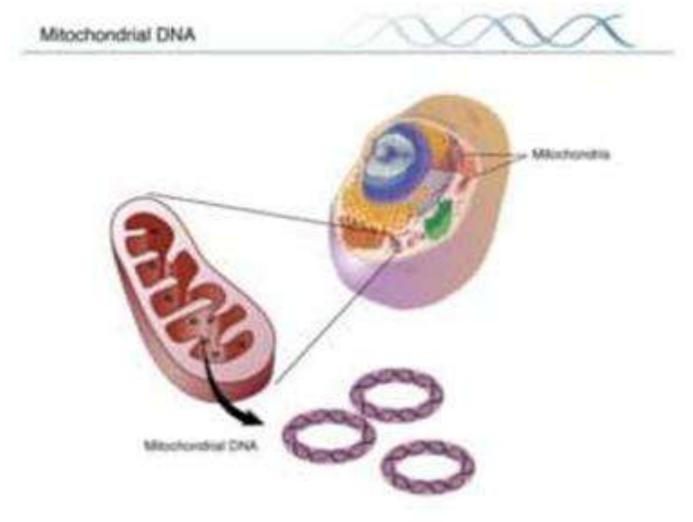


**iBOL:** International BAR CODE OF LIFE

- Established in 2008
- developing globally accessible, dna-based systems for the discovery and identification of all multicellular life
- BARCODE 500K (2010-2015) -500,000Barcodes
- BIOSCAN (2019-2026) barcode coverage to 2.5 million species
- Planetary Biodiversity Mission by 2045

### **BOLD: Barcode of Life Database System**




#### Significance of mtDNA

Step 1: Isolate DNA
Step 2: PCR Amplify target DNA barcode region
Step 3: Sequence PCR products
Step 4: Compare resulting sequences against ref
databases to find matching species





**Biosynthesis of** amino acids nucleotides steroid hormones heme ATP synthesis Oxidation of fatty acids Apoptotic cell death



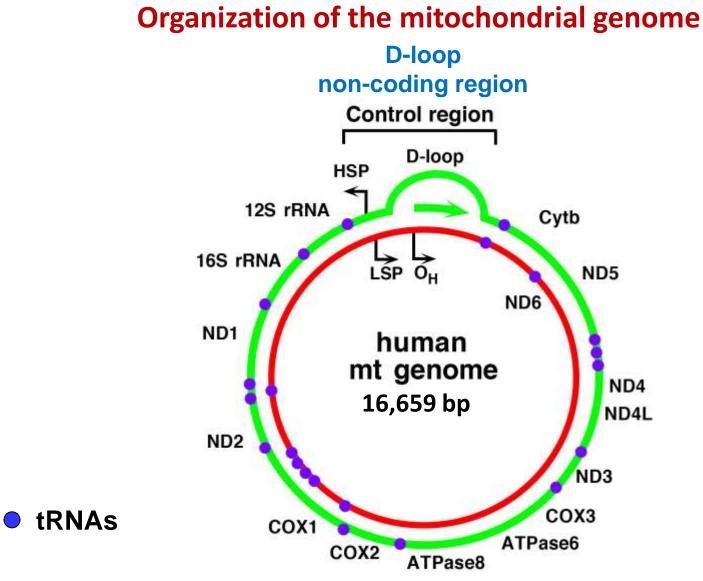
#### **Characteristics of animal mtDNAs**



- Circular
- Small in size ~16 kb in man
- 5-10 copies of mtDNA / mitochondrion
- ~1,000 mitochondria / cell
- ~1% of cellular DNA
- Encode:
- > 13 proteins
- Iarge and small rRNA
- ➤ tRNAs
- NO INTRONS- polycistronic mRNAs

### **Mitochondrial genetic code**

| vertebrates |               |            |  |  |  |  |  |  |  |  |
|-------------|---------------|------------|--|--|--|--|--|--|--|--|
| Codon       | Mitochondrial | Universal  |  |  |  |  |  |  |  |  |
| UGA         | Tryptophan    | Stop       |  |  |  |  |  |  |  |  |
| AUA         | Methionine    | Isoleucine |  |  |  |  |  |  |  |  |
| AGA         | Stop          | Arginine   |  |  |  |  |  |  |  |  |
| AGG         | Stop          | Arginine   |  |  |  |  |  |  |  |  |




### 13 protein, two ribosomal RNA and 22 tRNA genes typically found in animal mitochondrial genomes

| Protein encoded                                      | Designation for animal mtDNA                                        | Synonym                     |
|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
| Cytochrome oxidase subunit I, II, III                | COI, COII, COIII                                                    | cox1, cox2, cox3            |
| Cytochromeb apoenzyme                                | Cytb                                                                | cob                         |
| NADH dehydrogenase subunits 1-6, 4L                  | ND1-6, 4L                                                           | nad1-6, 4L                  |
| ATP synthase subunits 6, 8                           | A6, A8 or ATP6, ATP8                                                | atp6, atp8                  |
| Large ribosomal subunit RNA                          | lrRNA                                                               | rnl                         |
| Small ribosomal subunit RNA                          | srRNA                                                               | rns                         |
| 18 Transfer RNAs each specifying a single amino acid | Corresponding one-letter<br>amino acid code                         | trnX                        |
| Two transfer RNAs specifying leucine                 | Differentiated by codon recognized, <i>L(CUN)</i> and <i>L(UUR)</i> | Differentiated by subscript |
| Two transfer RNAs specifying serine                  | Differentiated by codon recognized,<br>S(AGN) and S(UCN)            | Differentiated by subscript |



The content of this slide may be subject to copyright: please see the slide notes for details.



D-loop: displacement loop HSP and LSP: heavy- and light- strand promoters for transcription O<sub>H</sub>: origin of replication

### Mitochondrial gene arrangements in nematodes

#### Caenorhabditis elegans and Ascaris suum (Nematoda, Secernentea)

#### Meloidogyne javonica (Nematoda, Secementea)

COI TSIRNAWY NDI Le ND2 I COIII N G C K F ND6 ND4L COII H LIRNA ND3 Cyto L P ND4 DMS2 A6 ND5 Q V A RES

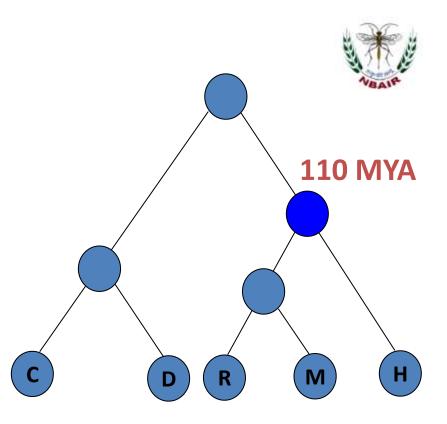
#### Onchocerca volvulus (Nematoda, Secernentea)

| COIW | ND | 6 RQ | Суњ | 4 | ¢oIII | KA | ų | NM | ND4L | Srrina | Y | ND1 | F | A6 | 10 | COII | H | LrRNA | ND3 | CS | P | D | ND5 | ES | ND2 | T | ND4 |  |
|------|----|------|-----|---|-------|----|---|----|------|--------|---|-----|---|----|----|------|---|-------|-----|----|---|---|-----|----|-----|---|-----|--|
|------|----|------|-----|---|-------|----|---|----|------|--------|---|-----|---|----|----|------|---|-------|-----|----|---|---|-----|----|-----|---|-----|--|

Nucleic Acids Research, Volume 27, Issue 8, 1 April 1999, Pages 1767–1780, https://doi.org/10.1093/nar/27.8.1767



The content of this slide may be subject to copyright: please see the slide notes for details.




# Why mtDNA important



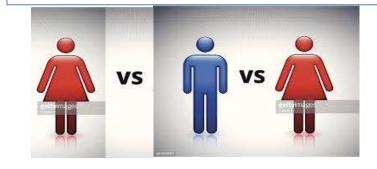
- Owing to their bacterial origin, mitochondria actually have their own DNA
- inherited exclusively from one's mother
- mtDNA can be inherited, variants in this DNA can also be passed down from generation to generation
- it mutates at a rapid pace than nuclear genome "molecular clock"

- Given
  - a phylogenetic tree
  - branch lengths (rt)
  - a time estimate for one (or more) node



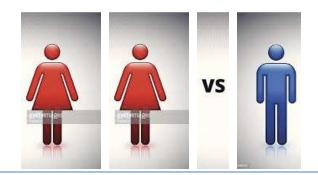
- Can we date other nodes in the tree?
- Yes... if the rate of molecular change is constant across all branches

# Why mtDNA for mol.clock & phylogeny


- DNA mutation rate slow and inheritance pattern, functional and structural genes
- Meiosis & natural assortion
- DNA repair



#### **Recognized as Mol. Operational Tax. Unit - MOTU**


- Mt DNA Inheritable
- Inheritance pattern maternal, homoplasmic & Heteropasmy
- Non Mendelian inheritance
- Predictability of mutations/generation -10times
- Inter and intraspecific variance
- Small numbers of sequences

#### How many parents are required for a single baby to be born?

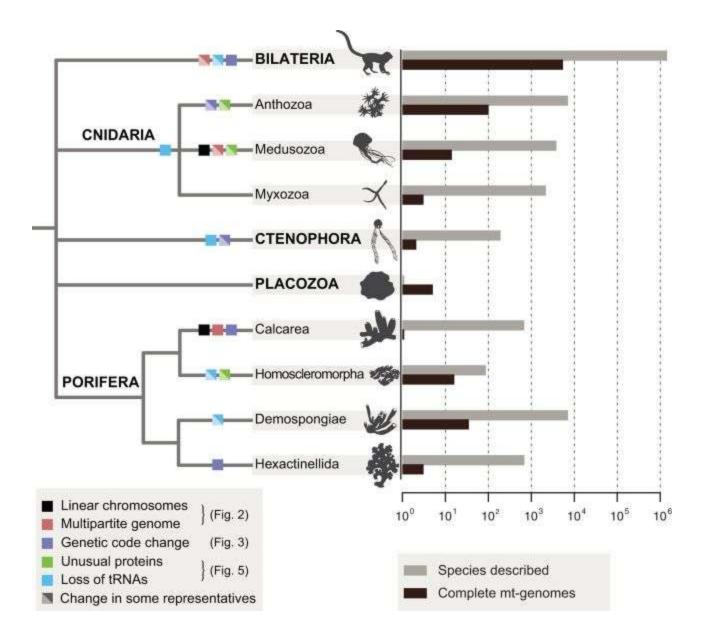


Can you imagine a situation like this?

Egg F1 + sperm = embryo to Fem2



N from Egg M + Egg of F2 + sperm = embryo to Fem2


Leigh syndrome - mutations in mitochondrial DNA



Egg F1 + sperm = embryo Mother



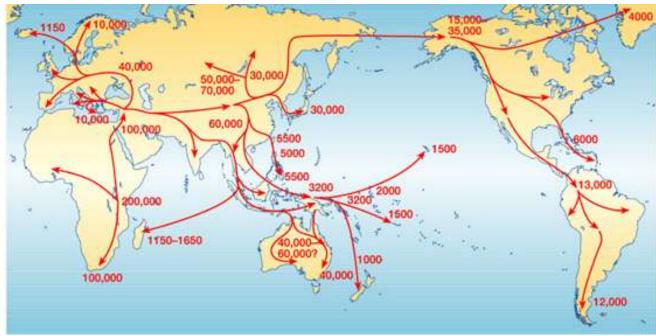




# Phylogeny & Barcoding markers

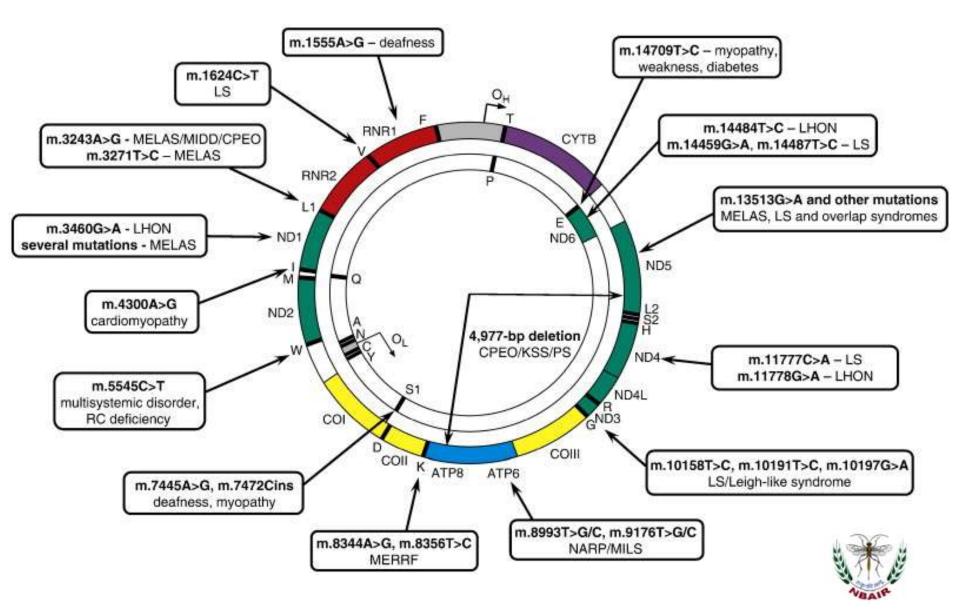
- Usually single gene/sequence in mtDNA & nDNA as taxonomic unit or multigene sequence phylogeny – why
- Now mitgenome




### Human mitochondrial DNA

- Multicopy (466-806 nucleoids /cell)
- + 16,569 bp length and 0.68  $\mu$  M diameter
- Genes lack introns
- Maternally inherited
- Sequenced in 1981 (Nature, 1981, 290:457-65)
- Mutation rate ~1/33 generations
- Heteroplasmy (original and mutated forms co-exist)
- More stable for forensic analysis

#### **Mitochondrial 'Eve'**


common female ancestor who lived in Africa

- African Origin Model suggests that our species evolved from a small African population that subsequently colonised the whole world,
- Coalescence analysis indicates that all mtDNA in modern humans can be traced back to a single female (~100-150,000 years ago)





#### Mitochondrial DNA mutations directly linked to human disease





Variability Phylogeny Molecular clock Repository Diseases Global biodiversity and genomic resources



# Thank you

Acknowledgements: Dr. NAGESH thankfully acknowledges Dr. Chandish Ballal, Director, ICAR-NBAIR Dr. Sampath Kumar & Dr Rangeshwaran, HRD Cell, ICAR-NBAIR Staff, Division of Genomic Resources Staff, PME Cell